SCR v1.1.8 User Manual

September 28, 2015

Abstract

The Scalable Checkpoint / Restart (SCR) library enables MPI applications to utilize distributed storage on
Linux clusters to attain high file I/O bandwidth for checkpointing and restarting large-scale jobs. With SCR,
jobs run more efficiently, recompute less work upon a failure, and reduce load on critical shared resources such
as the parallel file system.

SCR. caches checkpoint files in storage local to the compute nodes, and it applies a redundancy scheme such
that files can be recovered in the event of a failure. When a failure occurs, the current run is killed. If there
are sufficient spare nodes and time remaining in the resource allocation, another run may be restarted from
the cached checkpoint files. Otherwise, the cached checkpoint files are flushed to the parallel file system, and
the resource allocation is released. With this approach, file I/O bandwidth scales linearly with the number of
compute nodes. On large clusters, SCR is often 100x to 1000x faster than the parallel file system.

The SCR library is written in C, and it provides C and Fortran interfaces. It has been used in production at
LLNL since 2007 using RAM disk and SSDs on Linux / x86-64 / Infiniband clusters. The original implementation
required the SLURM resource manager, but it was designed to be portable. In 2011, SCR was ported to Cray
XT platforms running the TORQUE resource manager. SCR is an open source project under a BSD license
hosted at: https://github.com/hpc/scr.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07TNA27344.

https://github.com/hpc/scr

Contents

1

2

Introduction

Assumptions

Overview

3.1

Intro to the SCR API

3.2 Jobs, allocations, and Tuns L e e e e e e e e e e e e
3.3 Group, store, and redundancy descriptors Lo
3.4 Control, cache, and prefix directories L e
3.5 Example of SCR files and directories L L
3.6 Scalable checkpoint L
3.7 Scalable restart
3.8 Catastrophic failures L e
3.9 Fetch, flush, and scavenge L
The SCR library
4.1 SCR APIL . . e
4.1.1 SCRNit o e
4.1.2 SCR_Finalize o e e
4.1.3 SCR_Need_checkpoint e
4.1.4 SCR_Start_checkpoint e
4.1.5 SCR_Complete_checkpoint e
4.1.6 SCR_Routefile e e e e e e
4.2 Integrating the SCR APL 0 o o e
4.2.1 Init/Finalize e
4.2.2 Checkpoint o o o e
4.2.3 Restart L e e
4.3 Building with the SCR library e
Run a job
5.1 Supported platforms
5.2 Jobsand job steps Lo
5.3 Ignoring node failures L
5.4 The SCR wrapper script o . . oo i e e e e e
5.5 Example batch script for using SCR restart capability 0.
Configure a job
6.1 Setting parameterso e e e
6.2 Group, store, and checkpoint descriptors e
6.3 SCR parameters it e e e e e e e e
Halt a job
7.1 scrohalt and the halt file 0 0L o
7.2 Halt after next checkpoint L
7.3 Halt before or after a specified time e e
7.4 Halt immediately oL L
7.5 Catch a hanging job L
7.6 Combine, list, change, and unset halt conditions
7.7 Remove the halt file e

Manage datasets

9 Support and Contacts

29

4BSingle RAM disk 10000
Partner RAM disk

><XOR RAM disk

--Single SSD

-4 XOR SSD — 1000

-Partner SSD

®-Lustre (10GB/s peak)

./'//
—

>
v 100

GB/s

10

e 1

0.1

4 8 16 32 64 128 256 512 992
Nodes

Figure 1: Aggregate checkpoint write bandwidth on Coastal

1 Introduction

Compared to small-scale jobs, large-scale jobs face an increased likelihood of encountering system failures during
their run. To handle more frequent failures, large-scale jobs must checkpoint more frequently. These checkpoints
ultimately must be stored in the parallel file system, but checkpointing a large-scale job to the parallel file system
has two drawbacks. First, large-scale jobs must often checkpoint large data sets for which the parallel file system
delivers a relatively small amount of bandwidth. Second, the parallel file system is often shared among multiple
jobs, and so it may be busy servicing other jobs when the job needs to checkpoint. Either condition idles the job
while it waits for the storage resource.

The Scalable Checkpoint / Restart (SCR) library addresses both problems by caching checkpoints in scalable,
but less reliable storage. The solution derives from two key observations. First, a job only needs its most recent
checkpoint. As soon as the next checkpoint is written, the previous checkpoint can be discarded. Second, a typical
failure disables a small portion of the system, but it otherwise leaves most of the system intact. Leveraging these two
properties, SCR caches only the most recent checkpoints, and it applies a redundancy scheme such that checkpoints
can be recovered after a failure disables a small portion of the system. Each checkpoint is written to the cache
and discarded, unless a failure occurs, at which point SCR recovers the most recent checkpoint from cache. It then
copies the recovered checkpoint to the parallel file system, or if there are spare resources available, the job restarts
directly from its cached checkpoint. With this design, SCR delivers scalable bandwidth utilizing storage resources
that are fully dedicated to the job. The current implementation significantly outperforms the parallel file system
(see Figure 1).

Even when using SCR, some checkpoints must be written to the parallel file system, because some failures disable
larger portions of the system than the redundancy scheme can handle. However, with a well-chosen redundancy
scheme, the frequency with which these writes must be made can be greatly reduced. In essence, SCR is a production-
level implementation of a two-level checkpoint system of the type analyzed by Vaidya in [1].

Because large-scale jobs checkpoint faster with SCR, it is possible to configure a job to checkpoint more frequently
while simultaneously reducing its checkpointing overhead. Such a job then loses less work upon a failure, but it

also utilizes the machine more efficiently when there are no failures. Additionally, if spare resources are available,
a job can be restarted faster with SCR. Finally, by shifting its checkpointing traffic to SCR, a job reduces its load
on the parallel file system and the associated network, which benefits all jobs sharing those resources.

SCR consists of two components: a library and a set of commands. The application invokes the SCR library to
read and write checkpoint files, and the library maintains the checkpoint cache. The SCR commands are typically
invoked from the job batch script. They are used to prepare the cache before a job starts, automate the process
of restarting a job, and copy the latest checkpoint from cache to the parallel file system upon a failure. The SCR
library is described in Section 4. The SCR commands are discussed in Section 5. Important concepts applicable
to both are covered in Section 3. Details on configuring an SCR job are provided in Section 6, and instructions on
how to stop an SCR job are provided in Section 7. However, one must first understand all of the assumptions made
in the current SCR implementation as specified in the next section.

2 Assumptions

A number of assumptions are made in the SCR implementation. If any of these assumptions do not hold for a
particular application, that application cannot use SCR. If this is the case, or if you have any questions, please
notify the SCR developers. The goal is to expand the implementation to support a large number of applications.

1. The code must be an MPI application.
2. The code must take globally-coordinated checkpoints written primarily as a file per process.

3. A process having a particular MPI rank is only guaranteed access to its own checkpoint files, i.e., a process
of a given MPI rank may not access checkpoint files written by a process having a different MPI rank within
the same run or across different runs. Note that this may limit the effectiveness of the library for codes that
are capable of restarting from a checkpoint with a different number of processes than were used to write the
checkpoint. Such codes can often still benefit from the scalable checkpoint capability, but not the scalable
restart.

4. Tt must be possible to store the checkpoint files from all processes in the same directory. In particular, all files
belonging to a given checkpoint must have distinct names.

5. There is no support for subdirectories within a checkpoint directory; only a single flat file space.

6. Checkpoint files cannot contain data that span multiple checkpoints. In particular, there is no support for
appending data of the current checkpoint to a file containing data from a previous checkpoint. Each checkpoint
file set must be self-contained.

7. On some systems, checkpoints are cached in RAM disk. This restricts usage of SCR on those machines to
applications whose memory footprint leaves sufficient room to store checkpoint file data in memory simultane-
ously with the running application. The amount of storage needed depends on the redundancy scheme used.
See Section 3.6 for details.

8. SCR maintains a set of meta data files, which it stores in a subdirectory of the directory that contains the
application checkpoint files. The application must allow for these SCR meta data files to coexist with its own
files.

9. To use the scalable restart capability, a job must be restarted with the same number of processes as used to
write the checkpoint, and each process must only access the files it wrote during the checkpoint.

10. SCR occasionally flushes files from cache to a subdirectory on the parallel file system. SCR names and creates
these subdirectories within a parent directory that is specified by the application. See Section 3.4 for details.

11. Time limits should be imposed so that the SCR library has sufficient time to flush files from cache to the
parallel file system before the resource allocation expires. Additionally, care should be taken so that the run
does not stop in the middle of a checkpoint. See Section 7 for details.

3 Overview

This section discusses concepts one should understand about the SCR, library implementation including how it
interacts with file systems.

3.1 Intro to the SCR API

This section provides an overview of how one may integrate the SCR API into an application. For a more details,
see Section 4.

SCR is designed to support MPI applications that write application-level checkpoints, primarily as a file-per-
process. In a given checkpoint, each process may actually write zero or more files, but the current implementation
assumes that each process writes roughly the same amount of data. Before adding calls to the SCR library, existing
checkpointing code for such applications may look like the following;:

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

for (t = 0; t < TIMESTEPS; t++) {
/* ... do work ... ¥/

/* every so often, write a checkpoint */
if (t % CHECKPOINT_FREQUENCY == 0)
checkpoint () ;

MPI_Finalize();
return O;

}

void checkpoint() {
/* rank O creates a directory on the file system,
* and then each process saves its state to a file */

/* get rank of this process */
int rank;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/* rank O creates directory on parallel file system */
if (rank == 0)
mkdir(checkpoint_dir) ;

/* hold all processes until directory is created */
MPI_Barrier (MPI_COMM_WORLD) ;

/* build file name of checkpoint file for this rank */

char checkpoint_file[256];

sprintf (checkpoint_file, "Ys/rank_%d".ckpt",
checkpoint_dir, rank

);

/* each rank opens, writes, and closes its file */
FILEx fs = open(checkpoint_file, "w");
if (fs != NULL) {
fwrite(checkpoint_data, ..., fs);
fclose(fs);
}

The following code exemplifies the changes necessary to integrate SCR. Each change is numbered for further
discussion below.

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

/**x* change #1 **xx*/
SCR_Init();

for (t = 0; t < TIMESTEPS; t++) {
/* ... do work ... */

/**x* change #2 **xx*/
int need_checkpoint;
SCR_Need_checkpoint (&need_checkpoint) ;
if (need_checkpoint)

checkpoint () ;

/**x% change #3 **xx*/
SCR_Finalize();

MPI_Finalize();
return O;

}

void checkpoint() {
/* rank O creates a directory on the file system,
* and then each process saves its state to a file */

/**x* change #4 **xx/
SCR_Start_checkpoint () ;

/* get rank of this process */
int rank;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/*x*x change #5 *x*x/

/*
if (rank == 0)
mkdir (checkpoint_dir) ;
/* hold all processes until directory is created */
MPI_Barrier (MPI_COMM_WORLD) ;
*/

/* build file name of checkpoint file for this rank */

char checkpoint_file[256];

sprintf (checkpoint_file, "Ys/rank_%d".ckpt",
checkpoint_dir, rank

);

/***x change #6 **xxx/
char scr_file[SCR_MAX_FILENAME];
SCR_Route_file(checkpoint_file, scr_file);

/**x% change #7 **xx/
/* each rank opens, writes, and closes its file */
FILEx fs = open(scr_file, "w");
if (fs != NULL) {
fwrite(checkpoint_data, ..., fs);
fclose(fs);
}

/**x* change #8 **xx*/
SCR_Complete_checkpoint(valid);

First, as shown in change #1, one must call SCR_Init() to initialize the SCR library before it can be used.
SCR uses MPI, so SCR must be initialized after MPI has been initialized. Similarly, as shown in change #3,
it is good practice to shut down the SCR library by calling SCR_Finalize(). This must be done before calling
MPI Finalize(). As shown in change #2, the application may rely on SCR to determine when to checkpoint by
calling SCR_Need_checkpoint (). SCR can be configured with information on failure rates and checkpoint costs for
the particular host platform, so this function provides a portable method to guide an application toward an optimal
checkpoint frequency.

Then, as shown in change #4, the application must inform SCR when it is starting a new checkpoint by calling
SCR_Start_checkpoint (). Similarly, it must inform SCR when it has completed the checkpoint with a corre-
sponding call to SCR_Complete_checkpoint () as shown in change #8. When calling SCR_Complete_checkpoint (),
each process sets the valid flag to indicate whether it wrote all of its checkpoint files successfully. SCR manages
checkpoint directories, so the mkdir operation is removed in change #5.

Between the call to SCR_Start_checkpoint() and SCR_Complete_checkpoint (), the application must register
each of its checkpoint files by calling SCR_ Route_file() as shown in change #6. SCR “routes” the file by replacing
any leading directory on the file name with a path that points to another directory in which SCR caches data for
the checkpoint. As shown in change #7, the application must use the exact string returned by SCR_Route_file()
to open its checkpoint file.

All SCR functions are collective, except for SCR_Route_file(). Additionally, SCR imposes the following seman-
tics:

1. A process of a given MPI rank may only access files previously written by itself or by processes having the
same MPI rank in prior runs. We say that a rank “owns” the files it writes. A process is never guaranteed
access to files written by other MPI ranks.

2. During a checkpoint, a process may only access files of the current checkpoint between calls to SCR_Start_checkpoint ()
and SCR_Complete_checkpoint (). Once a process calls SCR_Complete_checkpoint () it is no longer guaran-
teed access to any file that it registered as part of that checkpoint via SCR_Route file().

3. During a restart, a process may only access files from its “most recent” checkpoint, and it must access those
files between calls to SCR_Init () and SCR_Start_checkpoint (). That is, a process cannot access its restart
files until it calls SCR_Init (), and once it calls SCR_Start_checkpoint (), it is no longer guaranteed access to
its restart files. SCR selects which checkpoint is considered to be the “most recent”.

These semantics enable SCR. to cache checkpoint files on devices that are not globally visible to all processes,
such as node-local storage. Further, these semantics enable SCR to move, reformat, or delete checkpoint files as
needed, such that it can manage this cache, which may be small.

Internally, SCR duplicates MPT_COMM_WORLD during SCR_Init. MPI messages by the SCR library do not mix
with messages sent by the application.

3.2 Jobs, allocations, and runs

A large-scale simulation often must be restarted multiple times in order to run to completion. It may be interrupted
due to a failure, or it may be interrupted due to time limits imposed by the resource scheduler. We use the term

allocation to refer to an assigned set of compute resources that are available to the user for a period of time. A
resource manager typically assigns an id to each resource allocation, which we refer to as the allocation id. SCR
uses the allocation id in some directory and file names. Within an allocation, a user may execute a simulation one
or more times. We call each execution a run. For MPI applications, each run corresponds to a single invocation of
mpirun or its equivalent. Finally, multiple allocations may be required to complete a given simulation. We refer to
this series of one or more allocations as a job. To summarize, one or more runs occur within an allocation, and one
or more allocations occur within a job.

3.3 Group, store, and redundancy descriptors

The SCR library must group processes of the parallel job in various ways. For example, if power supply failures
are common, it is necessary to identify the set of processes that share a power supply. Similarly, it is necessary
to identify all processes that can access a given storage device, such as an SSD mounted on a compute node. To
represent these groups, the SCR library uses a group descriptor. Details of group descriptors are given in Section 6.2.

Each group is given a unique name. The library creates two groups by default: NODE and WORLD. The NODE
group consists of all processes on the same compute node, and WORLD consists of all processes in the run. The user
or system administrator can create additional groups via configuration files (Section 6).

The SCR library must also track details about each class of storage it can access. For each available storage
class, SCR needs to know the associated directory prefix, the group of processes that share a device, the capacity
of the device, and other details like whether the associated file system can support directories. SCR tracks this
information in a store descriptor. Each store descriptor refers to a group descriptor, which specifies how processes
are grouped with respect to that class of storage. For a given storage class, it is assumed that all compute nodes
refer to the class using the same directory prefix. Each store descriptor is referenced by its directory prefix.

The library creates one store descriptor by default: /tmp. The assumption is made that /tmp is mounted as a
local file system on each compute node. On Linux clusters, /tmp is often RAM disk or a local hard drive. Additional
store descriptors can be defined by the user or system administrator in configuration files (Section 6).

Finally, SCR. defines redundancy descriptors to associate a redundancy scheme with a class of storage devices and
a group of processes that are likely to fail at the same time. It also tracks details about the particular redundancy
scheme used, and the frequency with which it should be applied. Redundancy descriptors reference both store and
group descriptors.

The library creates a default redundancy descriptor. It assumes that processes on the same node are likely to
fail at the same time. It also assumes that checkpoints can be cached in /tmp, which is assumed to be storage
local to each compute node. It applies an X0R redundancy scheme using a group size of 8. Additional redundancy
descriptors may be defined by the user or system administrator in configuration files (Section 6).

3.4 Control, cache, and prefix directories

SCR manages numerous files and directories to cache checkpoint data and to record its internal state. There are
three fundamental types of directories: control, cache, and prefix directories. For a detailed illustration of how these
files and directories are arranged, see the example presented in Section 3.5.

The control directory is where SCR. writes files to store internal state about the current run. This directory is
expected to be stored in node-local storage. SCR writes multiple, small files in the control directory, and it may
access these files frequently. It is best to configure this directory to be stored in a node-local RAM disk.

To construct the full path of the control directory, SCR incorporates a control base directory name along with
the user name and allocation id associated with the resource allocation. This enables multiple users, or multiple
jobs by the same user, to run at the same time without conflicting for the same control directory. The control
base directory is hard-coded into the SCR library at configure time, but this value may be overridden via a system
configuration file. The user may not change the control base directory.

SCR directs the application to write checkpoint files to subdirectories within a cache directory. SCR also stores
its redundancy data in these subdirectories. The device serving the cache directory must be large enough to hold the
data for one or more checkpoints plus the associated redundancy data. Multiple cache directories may be utilized

in the same run, which enables SCR to use more than one class of storage within a run (e.g., RAM disk and SSD).
Cache directories should be located on scalable storage.

To construct the full path of a cache directory, SCR incorporates a cache base directory name with the user name
and the allocation id associated with the resource allocation. A set of valid cache base directories is hard-coded
into the SCR library at configure time, but this set can be overridden in a system configuration file. Out of this
set, the user may select a subset of cache base directories to use during a run. A cache directory may be the same
as the control directory.

The user must configure the maximum number of checkpoints that SCR should keep in each cache directory. It
is up to the user to ensure that the capacity of the device associated with the cache directory is large enough to
hold the specified number of checkpoints.

SCR refers to each application checkpoint as a dataset. SCR assigns a unique sequence number to each dataset
called the dataset id. It assigns dataset ids starting from 1 and counts up with each successive dataset written by
the application. Within a cache directory, a dataset is written to its own subdirectory called the dataset directory.

Finally, the prefix directory is a directory on the parallel file system that the user specifies. SCR. copies datasets
to the prefix directory for permanent storage (Section 3.9). The prefix directory should be accessible from all
compute nodes, and the user must ensure that the prefix directory is unique for each job. For each dataset stored in
the prefix directory, SCR creates and manages a dataset directory. The dataset directory holds all files associated
with a particular dataset, including application files and SCR redundancy files. SCR maintains an index file within
the prefix directory, which records information about each dataset stored there.

Note that the term “dataset directory” is overloaded. In some cases, we use this term to refer to a directory
in cache and in other cases we use the term to refer to a directory within the prefix directory on the parallel file
system. In any particular case, the meaning should be clear from the context.

3.5 Example of SCR files and directories

To illustrate how files and directories are arranged in SCR, consider the example shown in Figure 2. In this
example, a user named “userl” runs a 4-task MPI job with one task per compute node. The base directory
for the control directory is /tmp, the base directory for the cache directory is /ssd, and the prefix directory is
/p/1lscratchb/userl/simulation123. The control and cache directories are storage devices local to the compute
node.

The full path of the control directory is /tmp/userl/scr.1145655. This is derived from the concatenation of
the control base directory (/tmp), the user name (userl), and the allocation id (1145655). SCR keeps files to
persist its internal state in the control directory, including filemap files as shown.

Similarly, the cache directory is /ssd/userl/scr.1145655, which is derived from the concatenation of the
cache base directory (/ssd), the user name (userl), and the allocation id (1145655). Within the cache directory,
SCR creates a subdirectory for each dataset. In this example, there are two datasets with ids 17 and 18. The
application dataset files and SCR redundancy files are stored within their corresponding dataset directory. On the
node running MPI rank 0, there is one application dataset file (rank_0.ckpt) and one XOR redundancy data file
(1-0f 4_in 0.xor).

Finally, the full path of the prefix directory is /p/lscratchb/userl/simulation123. This is a path on the
parallel file system that is specified by the user. It is unique to the particular simulation the user is running
(simulation123). The prefix directory contains dataset directories. It also contains a hidden .scr directory where
SCR writes the index file to record info for each of the datasets (Section 8). The SCR library writes other files to
this hidden directory, including the “halt” file (Section 7).

While the user provides the prefix directory, SCR defines the name of each dataset directory to be “scr.dataset.<id>”
where <id> is the dataset id. In this example, there are multiple datasets stored on the parallel file system corre-
sponding to dataset ids 10, 12, and 18. Within each dataset directory, SCR stores the files written by the application.
SCR also creates a hidden .scr subdirectory, and this hidden directory contains redundancy files and other SCR
files that are specific to the dataset.

10

Compute nodes with node-local storage

@Oem @ @ @

directory

=d 5 = =

/tmp/user1/scr.1145655/ /tmp/user1/scr.1145655/ /tmp/user1/scr.1145655/ /tmp/user1/scr.1145655/

filemap.scrinfo filemap.scrinfo filemap.scrinfo filemap.scrinfo
filemap_0.scrinfo filemap_0.scrinfo filemap_0.scrinfo filemap_0.scrinfo
Cache
directory

/ssd/useri/scr.1145655/ /ssq/gser(‘l);scr.‘l 145655/ /ssdluser1/scr.1145655/
index.

index.0/ index.0/ .
q 18/ dataset.18/ dataset.18/ Hidden .scr
ataset. scr/ scr/ % directory in
-scr/) 2 of 4_in_0.xor 3 of 4 in Oxor dataset
1[(—()(:—1—':—0')(” rank_1.ckpt rank_2.ckpt
rank_0.ckp dataset.17/ ¥
dataset 17/ dataset.17/
Dataset Parallel file system
directories
Prefix
directory . .
Ip/lscratchb/user1/simulation123/
.scr/
. index.scr Index, Halt
Hidden .scr ’ ,
halt.scr
directory in prefix flush.scr <:' F'USh’ and Nodes
Dataset nodes.scr files
R é> scr.dataset.18/
directory scr/
summary.scr Summary and
. rank2file.scr
Hidden .scr rank2file.0.0.scr rank2file files
directory in rank_0.ckpt
dataset rank_1.ckpt Application
rank_2.ckpt dataset
Dataset rank_3.ckpt files

directories w scr.dataset.12/

scr.dataset.10/

Figure 2: Example of SCR Directories

11

3.6 Scalable checkpoint

In practice, it is common for multiple processes to fail at the same time, but most often this happens because those
processes depend on a single, failed component. It is not common for multiple, independent components to fail
simultaneously. By expressing the groups of processes that are likely to fail at the same time, the SCR library can
apply redundancy schemes to withstand common, multi-process failures. We refer to a set of processes likely to fail
at the same time as a failure group.

SCR must also know which groups of processes share a given storage device. This is useful so the group can
coordinate its actions when accessing the device. For instance, if a common directory must be created before each
process writes a file, a single process can create the directory and then notify the others. We refer to a set of
processes that share a storage device as a storage group.

Users and system administrators can pass information about failure and storage groups to SCR. in descriptors
defined in configuration files (See Section 6.2). Given this knowledge of failure and storage groups, the SCR library
implements three redundancy schemes which trade off performance, storage space, and reliability:

e Single - each checkpoint file is written to storage accessible to the local process

e Partner - each checkpoint file is written to storage accessible to the local process, and a full copy of each file
is written to storage accessible to a partner process from another failure group

e XOR - each checkpoint file is written to storage accessible to the local process, XOR, parity data are computed
from checkpoints of a set of processes from different failure groups, and the parity data are stored among the
set.

With Single, SCR writes each checkpoint file in storage accessible to the local process. It requires sufficient
space to store the maximum checkpoint file size. This scheme is fast, but it cannot withstand failures that disable
the storage device. For instance, when using node-local storage, this scheme cannot withstand failures that disable
the node, such as when a node loses power or its network connection. However, it can withstand failures that kill
the application processes but leave the node intact, such as application bugs and file I/O errors.

With Partner, SCR writes checkpoint files to storage accessible to the local process, and it also copies each
checkpoint file to storage accessible to a partner process from another failure group. This scheme is slower than
Single, and it requires twice the storage space. However, it is capable of withstanding failures that disable a storage
device. In fact, it can withstand failures of multiple devices, so long as a device and the device holding the copy do
not fail simultaneously.

With X0R, SCR defines sets of processes where members within a set are selected from different failure groups.
The processes within a set collectively compute XOR parity data which is stored in files along side the application
checkpoint files. This algorithm is based on the work found in [2], which in turn was inspired by RAID5 [3]. This
scheme can withstand multiple failures so long as two processes from the same set do not fail simultaneously.

Computationally, XOR is more expensive than Partner, but it requires less storage space. Whereas Partner
must store two full checkpoint files, XOR stores one full checkpoint file plus one XOR parity segment, where the
segment size is roughly 1/(N — 1) times the size of a checkpoint file for a set of size N. Larger sets demand less
storage, but they also increase the probability that two processes in the same set will fail simultaneously. Larger
sets may also increase the cost of recovering files in the event of a failure.

3.7 Scalable restart

So long as a failure does not violate the redundancy scheme, a job can restart within the same resource allocation
using the cached checkpoint files. This saves the cost of writing checkpoint files out to the parallel file system only
to read them back during the restart. In addition, SCR provides support for the use of spare nodes. A job can
allocate more nodes than it needs and use the extra nodes to fill in for any failed nodes during a restart. SCR
includes a set, of scripts which encode much of the restart logic (Section 5).

Upon encountering a failure, SCR relies on the MPI library, the resource manager, or some other external service
to kill the current run. After the run is killed, and if there are sufficient healthy nodes remaining, the same job can
be restarted within the same allocation. In practice, such a restart typically amounts to issuing another “mpirun”
in the job batch script.

12

Of the set of nodes used by the previous run, the restarted run should use as many of the same nodes as it can
to maximize the number of files available in cache. A given MPI rank in the restarted run does not need to run on
the same node that it ran on in the previous run. SCR distributes cached files among processes according to the
process mapping of the restarted run.

By default, SCR inspects the cache for existing checkpoints when a job starts. It attempts to rebuild all datasets
in cache, and then it attempts to restart the job from the most recent checkpoint. If a checkpoint fails to rebuild,
SCR deletes it from cache. To disable restarting from cache, set the SCR_DISTRIBUTE parameter to 0. When
disabled, SCR deletes all files from cache and restarts from a checkpoint on the parallel file system.

An example restart scenario is illustrated in Figure 3 in which a 4-node job using the Partner scheme allocates
5 nodes and successfully restarts within the allocation after a node fails.

3.8 Catastrophic failures

There are some failures from which the SCR library cannot recover. In such cases, the application is forced to fall
back to the latest checkpoint successfully written to the parallel file system. Such catastrophic failures include the
following:

Multiple node failure which violates the redundancy scheme. If multiple nodes fail in a pattern which vi-
olates the cache redundancy scheme, data are irretrievably lost.

Failure during a checkpoint. Due to cache size limitations, some applications can only fit one checkpoint in
cache at a time. For such cases, a failure may occur after the library has deleted the previous checkpoint but
before the next checkpoint has completed. In this case, there is no valid checkpoint in cache to recover.

Failure of the node running the job batch script. The logic at the end of the allocation to scavenge the latest
checkpoint from cache to the parallel file system executes as part of the job batch script. If the node executing
this script fails, the scavenge logic will not execute and the allocation will terminate without copying the latest
checkpoint to the parallel file system.

Parallel file system outage. If the application fails when writing output due to an outage of the parallel file
system, the scavenge logic may also fail when it attempts to copy files to the parallel file system.

There are other catastrophic failure cases not listed here. Checkpoints must be written to the parallel file system
with some moderate frequency so as not to lose too much work in the event of a catastrophic failure. Section 3.9
provides details on how to configure SCR to make occasional writes to the parallel file system.

By default, the current implementation stores only the most recent checkpoint in cache. One can change
the number of checkpoints stored in cache by setting the SCR_.CACHE_SIZE parameter. If space is available, it is
recommended to increase this value to at least 2.

3.9 Fetch, flush, and scavenge

SCR manages the transfer of datasets between the prefix directory on the parallel file system and the cache. We use
the term fetch to refer to the action of copying a dataset from the parallel file system to cache. When transferring
data in the other direction, there are two terms used: flush and scavenge. Under normal circumstances, the library
directly copies files from cache to the parallel file system, and this direct transfer is known as a flush. However,
sometimes a run is killed before the library can complete this transfer. In these cases, a set of SCR commands
is executed after the final run to ensure that the latest checkpoint is copied to the parallel file system before the
allocation expires. We say that these scripts scavenge the latest checkpoint.

Each time an SCR job starts, SCR first inspects the cache and attempts to distribute files for a scalable restart
as discussed in Section 3.7. If the cache is empty or the distribute operation fails or is disabled, SCR attempts to
fetch a checkpoint from the prefix directory to fill the cache. SCR reads the index file and attempts to fetch the
most recent checkpoint, or otherwise the checkpoint that is marked as current within the index file. For a given
checkpoint, SCR records whether the fetch attempt succeeds or fails in the index file. SCR does not attempt to

13

Run job with
spare node S.

Job stores
a checkpoint.

Node dies.

Relaunch
with spare.

Distribute files to
new rank mapping.

Rebuild
redundancy.

Continue run.

ONONOROXO

OR BORONO
on 3 =

Figure 3: Example restart after a failed node with Partner

14

fetch a checkpoint that is marked as being incomplete nor does it attempt to fetch a checkpoint for which a previous
fetch attempt has failed. If SCR attempts but fails to fetch a checkpoint, it prints an error and continues the run.

To disable the fetch operation, set the SCR_LFETCH parameter to 0. If an application disables the fetch feature,
the application is responsible for reading its checkpoint set directly from the parallel file system upon a restart.

To withstand catastrophic failures, it is necessary to write checkpoint sets out to the parallel file system with
some moderate frequency. In the current implementation, the SCR library writes a checkpoint set out to the parallel
file system after every 10 checkpoints. This frequency can be configured by setting the SCR_FLUSH parameter. When
this parameter is set, SCR decrements a counter with each successful checkpoint. When the counter hits 0, SCR
writes the current checkpoint set out to the file system and resets the counter to the value specified in SCR_FLUSH.
SCR preserves this counter between scalable restarts, and when used in conjunction with SCR_FETCH, it also preserves
this counter between fetch and flush operations such that it is possible to maintain periodic checkpoint writes across
runs. Set SCR_FLUSH to 0 to disable periodic writes in SCR. If an application disables the periodic flush feature,
the application is responsible for writing occasional checkpoint sets to the parallel file system.

By default, SCR computes and stores a CRC32 checksum value for each checkpoint file during a flush. It
then uses the checksum to verify the integrity of each file as it is read back into cache during a fetch. If data
corruption is detected, SCR falls back to fetch an earlier checkpoint set. To disable this checksum feature, set the
SCR_CRC_ON_FLUSH parameter to 0.

4 The SCR library

This sections describes how to use the SCR library.

4.1 SCR API

The SCR API is designed to support a common checkpointing technique used by large-scale codes, which is to take
globally-coordinated checkpoints written primarily as a file per process. The API is designed to be simple, scalable,
and portable. It consists of a small number of function calls to wrap existing application checkpoint logic. In most
cases, one may fully integrate SCR. into an application with fifteen to twenty lines of source code.

Unless otherwise stated, SCR functions are collective, meaning all processes must call the function synchronously.
The underlying implementation may or may not be synchronous, but to be portable, an application must treat a
collective call as though it is synchronous. This constraint enables the SCR, implementation to utilize the full
resources of the job in a collective manner to optimize performance at critical points such as computing redundancy
data.

Applications written in C should include “scr.h”, and Fortran should include “scrf.h”. All functions return
SCR_SUCCESS if successful.

4.1.1 SCR_Init

int SCR_Init();

SCR_INIT(IERROR)
INTEGER IERROR

Initialize the SCR library: identify failure groups, prepare the cache, distribute and rebuild files upon a restart,
etc. This function must be called after MPI_Init, and it is good practice to call this function immediately after
MPI_Init. A process should only call SCR_Init once during its execution. No other SCR calls are valid until a
process has returned from SCR_Init.

In the current implementation, configuration parameters are processed during SCR_Init, process groups are
established for redundancy computation, and internal cache and control directories are created. The library also
attempts to acquire the latest checkpoint for the job. It first inspects the cache for existing checkpoints as discussed
in Section 3.7. If this fails, it attempts to fetch the latest checkpoint from the parallel file system as discussed in
Section 3.9. If that also fails, the library prints a warning and continues the run. Before returning from SCR_Init,

15

MPI rank 0 determines whether the job should be halted and signals this condition to all other ranks (Section 7).
If the job should be halted, rank 0 records a reason in the halt file, and then all tasks call exit, in which case,
control does not return to the application.

4.1.2 SCR_Finalize

int SCR_Finalize();

SCR_FINALIZE (IERROR)
INTEGER IERROR

Shut down the SCR library: free resources, flush datasets to the prefix directory, etc. This function must be
called before MPI_Finalize, and it is good practice to call this function just before MPI_Finalize. A process should
only call SCR_Finalize once during its execution.

If SCR_FLUSH is enabled, SCR_Finalize flushes any datasets to the prefix directory if necessary. It updates
the halt file to indicate that SCR_Finalize has been called. This halt condition prevents the job from restarting
(Section 7).

4.1.3 SCR_Need_checkpoint

int SCR_Need_checkpoint(int* flag);

SCR_NEED_CHECKPOINT(FLAG, IERROR)
INTEGER FLAG, IERROR

Since the failure frequency and the cost of checkpointing vary across platforms, SCR_Need_checkpoint provides
a portable way for an application to determine whether a checkpoint should be taken. This function is passed a
pointer to an integer in flag. Upon returning from SCR_Need_checkpoint, flag is set to the value 1 if a checkpoint
should be taken, and it is set to 0 otherwise. The call returns the same value in flag on all processes.

In addition to guiding an application to the optimum checkpoint frequency on a given platform, this call also
enables a running application to react to external commands. For instance, if the application has been instructed
to halt, then SCR_Need_checkpoint may indicate that a checkpoint should be taken.

4.1.4 SCR_Start_checkpoint

int SCR_Start_checkpoint();

SCR_START_CHECKPOINT (IERROR)
INTEGER IERROR

Inform SCR that a new checkpoint is about to start. A process must call this function before it opens any
files belonging to the new checkpoint. SCR_Start_checkpoint must be called by all processes, including processes
that do not write files as part of the checkpoint. This function should be called as soon as possible when initiating
a checkpoint. The SCR implementation uses this call as the starting point to time the cost of the checkpoint in
order to optimize the checkpoint frequency via SCR_Need_checkpoint. Each call to SCR_Start_checkpoint must
be followed by a corresponding call to SCR_Complete_checkpoint.

In the current implementation, SCR_Start_checkpoint holds all processes at an MPI_Barrier to ensure that all
processes are ready to start the checkpoint before it deletes cached files from a previous checkpoint.

4.1.5 SCR_Complete_checkpoint

int SCR_Complete_checkpoint(int valid);

SCR_COMPLETE_CHECKPOINT(VALID, IERROR)
INTEGER VALID, IERROR

16

Inform SCR that all files for the current checkpoint are complete (i.e., done writing and closed) and whether they
are valid (i.e., written without error). A process must close all checkpoint files before calling SCR_Complete_checkpoint.
SCR_Complete_checkpoint must be called by all processes, including processes that did not write any files as part of
the checkpoint. The parameter valid should be set to 1 if either the calling process wrote all of its files successfully
or it wrote no files during the checkpoint. Otherwise, the process should call SCR_Complete_checkpoint with valid
set to 0. SCR will determine whether all processes wrote their checkpoint files successfully. The SCR implemen-
tation uses this call as the stopping point to time the cost of the checkpoint that started with the preceding call
to SCR_Start_checkpoint. Each call to SCR_Complete_checkpoint must be preceded by a corresponding call to
SCR_Start_checkpoint.

In the current implementation, SCR applies the redundancy scheme during SCR_Complete_checkpoint. Before
returning from the function, MPI rank 0 determines whether the job should be halted and signals this condition to
all other ranks (Section 7). If the job should be halted, rank 0 records a reason in the halt file, and then all tasks
call exit, in which case, control is returned to the application.

4.1.6 SCR_Route._file

int SCR_Route_file(const char* name, char* file);

SCR_ROUTE_FILE(NAME, FILE, IERROR)
CHARACTER#* (x) NAME, FILE
INTEGER IERROR

A process calls SCR_Route_file to obtain the full path and file name it must use to access a checkpoint file.
The name of the checkpoint file that the process intends to access must be passed in the name argument. A pointer
to a character buffer of at least SCR_.MAX_FILENAME bytes must be passed in file. When a call to SCR_Route_file
returns SCR_SUCCESS, the full path and file name to access the file named in name is written to the buffer pointed
to by file. The process must use the character string returned in file to access the file. A process does not
need to create any directories listed in the string returned in file; the SCR implementation creates any necessary
directories before returning from the call. If SCR_SUCCESS is not returned by a call to SCR_Route_file, the value
in file is undefined and should not be used. A call to SCR_Route_file is local to the calling process; it is not a
collective call. The precise behavior of SCR_Route_file depends on the calling context as described below.

During a checkpoint, a process must call SCR_Route_file after it calls SCR_Start_checkpoint and before it
calls SCR_Complete_checkpoint to register a file as part of the current checkpoint set and to obtain the full path
and file name to access the file. It is assumed the file will be opened for writing. SCR returns the same string in
file if a process calls SCR_Route_file multiple times with the same name within a given SCR_Start_checkpoint /
SCR_Complete_checkpoint pair. Once a process calls SCR_Complete_checkpoint, SCR may relocate, reformat, or
delete checkpoint files, so paths returned by SCR_Route_file are no longer valid.

When using SCR during a restart, a process must call SCR_Route_file after SCR_Init and before SCR_Start_checkpoint
to obtain the full path and file name to open a file. If a file cannot be accessed for reading, SCR_Route_file returns
a value other than SCR_SUCCESS, and the string returned in file is undefined. When successful, SCR_Route_file
always returns the full path and file name of the most recent checkpoint of a given file.

In the current implementation, SCR. only changes the directory portion of name. It strips any directory compo-
nents listed in name down to the base file name. Then, it prepends a directory to the base file name and returns
the full path and file name in file.

4.2 Integrating the SCR API

There are three steps to consider when integrating the SCR API into an application: Init/Finalize, Checkpoint,
and Restart. One may employ the scalable checkpoint capability of SCR without the scalable restart capability.
While it is most valuable to utilize both, some applications cannot use the scalable restart.

17

4.2.1 Init/Finalize

You must add calls to SCR_Init and SCR_Finalize in order to start up and shut down the library. The SCR library
uses MPI internally, and all calls to SCR must be from within a well defined MPI environment, i.e., between MPI_Init
and MPI Finalize. It is recommended to call SCR_Init immediately after MPI_Init and to call SCR_Finalize just
before MPI_Finalize. For example, modify the source to look something like this:

// Include the SCR header
#include ‘‘scr.h’’

// Initialization
MPI_Init(...);
SCR_Init();

// Finalization
SCR_Finalize();
MPI_Finalize();

Some applications contain multiple calls to MPI_Finalize. In such cases, be sure to account for each call. The
same applies to MPI_Init if there are multiple calls to this function.

4.2.2 Checkpoint

First, know that the application may rely on SCR to determine how often it should checkpoint. SCR can be
configured with details on the failure frequency of the host platform, and it can compute the checkpoint cost, so
it has sufficient information to determine the optimal checkpoint frequency. For this, the application should call
SCR_Need_checkpoint at each natural opportunity it has to checkpoint, e.g., at the end of each time step, and then
initiate a checkpoint when SCR advises it to do so. In the current implementation, the library makes the decision
on MPI rank 0, and it broadcasts this decision to the rest of the processes. As such, this call involves some amount
of global synchronization.

An application may ignore the output of SCR_Need_checkpoint, and it does not have to call the function at
all. The intent of SCR_Need_checkpoint is to provide a portable way for an application to determine when to
checkpoint across platforms with different reliability characteristics and different file system speeds. This function
also serves as an interface to receive instructions from commands external to the job. For example, it can be used
to inform the application to write a checkpoint just before the run is shut down via an external command like
scr_halt (Section 7).

To actually write a checkpoint, there are three steps. First, the application must call SCR_Start_checkpoint to
define the start boundary of a new checkpoint. It must do this before it opens any file it writes as part of the check-
point. Then, the application must call SCR_Route_file for each file it writes as part of the checkpoint to register each
file and to determine the full path and file name to open each file. Finally, it must call SCR_Complete_checkpoint
to define the end boundary of the checkpoint.

If a process does not write any files during a checkpoint, it must still call SCR_Start_checkpoint and SCR_Complete_checkpoin
as these functions are collective. All files registered through a call to SCR_Route_file between a given SCR_Start_checkpoint
and SCR_Complete_checkpoint pair are considered to be part of the same checkpoint file set. Some example SCR

18

checkpoint code looks like the following:

// Include the SCR header
#include ‘‘scr.h’’

// Determine whether we need to checkpoint

int flag;
SCR_Need_checkpoint (&flag) ;
if (flag) {

// Tell SCR that a new checkpoint is starting
SCR_Start_checkpoint () ;

// Define the checkpoint file name for this process
int rank;

char name[256] ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

sprintf (name, °‘rank_%d.ckpt’’, rank);

// Register our file, and get the full path to open it
char file[SCR_MAX_FILENAME];
SCR_Route_file(name, file);

// Open, write, and close the file
int valid = 0;
FILEx fs = open(file, "w");
if (fs != NULL) {
valid = 1;
size_t n = fwrite(checkpoint_data, 1, sizeof(checkpoint_data), fs);
if (n != sizeof (checkpoint_data)) { valid = 0; }
if (fclose(fs) !'= 0) { valid = 0; }
}

// Tell SCR that this process is done writing its checkpoint files
SCR_Complete_checkpoint(valid);

In particular, note that the application should not create any directories as part of this checkpoint. The SCR
library will manage directory creation. The application only must list and write its files.

4.2.3 Restart

There are two options to access files during a restart: with and without SCR. If an application is designed to restart
such that each MPI task only needs access to the files it wrote during the previous checkpoint, then the application
can utilize the scalable restart capability of SCR. This enables the application to restart from a cached checkpoint
in the existing resource allocation, which saves the cost of writing to and reading from the parallel file system.

To use SCR, the application must call SCR_Route_file to determine the full path and file name to each of
its checkpoint files. If this call succeeds, it returns the most recent version of the checkpoint file. It should call
SCR_Route_file after SCR_Init and before SCR_Start_checkpoint. Some example SCR restart code may look like

19

the following:

// Include the SCR header
#include ‘‘scr.h’’

// Initialize SCR
SCR_Init();

// Define the checkpoint file name for this process
int rank;

char name[256] ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

sprintf (name, ‘‘rank_%d.ckpt’’, rank);

// Get the full path to open our file
char file[SCR_MAX_FILENAME];
if (SCR_Route_file(name, file) == SCR_SUCCESS) {
// Open, read, and close the file
FILEx fs = open(file, "r");
size_t n = fread(checkpoint_data, 1, sizeof(checkpoint_data), fs);
fclose(fs);
} else {
// There is no existing file to restart from

If the application does not use SCR for restart, it should not make calls to SCR_Route_file during the restart.
Instead, it should access files directly from the parallel file system. The application must account for the SCR
directory structure used to store checkpoint sets as described in Section 3.4. Be aware that this directory structure
may change between SCR versions. Also, know that when restarting without SCR, the value of the SCR_FLUSH
counter will not be preserved between restarts. The counter will be reset to its upper limit with each restart. Thus,
each restart may introduce some fixed offset in a series of periodic SCR flushes. When not using SCR, for restart,
one should set the SCR_FLUSH_ON_RESTART parameter to 1, which will cause SCR. to flush any cached checkpoint to
the file system during SCR_Init.

4.3 Building with the SCR library

To compile and link with the SCR library, add the flags in Table 1 to your compile and link lines. The value of the
variable SCR_INSTALL DIR should be the path to the installation directory for SCR.

Table 1: SCR build flags

Compile Flags -I$(SCR_INSTALL_DIR)/include

C Dynamic Link Flags -L$ (SCR_INSTALL DIR)/1ib -lscr -Wl,-rpath,$(SCR_INSTALL DIR)/1ib
C Static Link Flags -L$(SCR_INSTALL_DIR)/1lib/ -lscr -lscr_base -lscr -1z

Fortran Dynamic Link Flags -L$(SCR_INSTALL.DIR)/1ib -lscrf -Wl,-rpath,$(SCR_INSTALL DIR)/1ib
Fortran Static Link Flags -L$(SCR_INSTALL_DIR)/1lib -1scrf -lscr_base -lscrf -1z

On LLNL systems, the default installation location (SCR-INSTALL_DIR) is /usr/local/tools/scr-1.1/.
Note that some libraries are listed multiple times to satisfy cyclical link dependencies.

5 Run a job

In addition to the SCR library, one must properly configure the batch system and include a set of SCR commands
in the job batch script. In particular, one must: 1) inform the batch system that the allocation should remain

20

available even after a failure, and 2) replace the command to execute the application with an SCR wrapper script.
The precise set of options and commands to use depends on the system resource manager.

The SCR commands prepare the cache, scavenge files from cache to the parallel file system, and check that the
scavenged dataset is complete among other things. These commands are located in the /bin directory where SCR
is installed. There are numerous SCR commands. Any command not mentioned in this document is not intended
to be executed by users.

5.1 Supported platforms

At the time of this writing, SCR supports several machines from LLNL and Los Alamos National Laboratory
(LANL). Systems similar to those described here may also work with SCR, or may work with some changes. Please
contact us for help in porting SCR to other platforms. (See Section 9 for contact information)

The platforms currently supported by SCR are LLNL and LANL TLCC2 machines, which use the MOAB
workload manager and the SLURM resource manager, and the LANL Cray XT platforms Cielito and Cielo, which
use the MOAB workload manager and the ALPS resource manager. The descriptions for using SCR, in this section
apply to these specific systems, however the following description is helpful to understand how to run SCR on any
system.

5.2 Jobs and job steps

First, we differentiate between a job allocation and a job step. Our terminology originates from the SLURM resource
manager, but the principles apply generally across SCR-supported resource managers.

When a job is scheduled resources on a system, the batch script executes inside of a job allocation. The job
allocation consists of a set of nodes, a time limit, and a job id. The job id can be obtained by executing the squeue
command on SLURM or the apstat command on ALPS.

Within a job allocation, a user may run one or more job steps, each of which is invoked by a call to srun
(SLURM) or aprun (ALPS). Each job step is assigned its own step id. On SLURM, within each job allocation, job
step ids start at 0 and increment with each issued job step. Job step ids can be obtained by passing the -s option
to squeue. A fully qualified name of a SLURM job step consists of: jobid.stepid. For instance, the name 1234.5
refers to step id 5 of job id 1234. On ALPS, each job step within an allocation has a unique id that can be obtained
through apstat.

5.3 Ignoring node failures

Before running an SCR job, it is necessary to configure the job allocation to withstand node failures. By default,
MOAB will kill the job allocation if a node fails, however SCR requires the job allocation to remain active in order
to restart the job or to scavenge files. To enable the job allocation to continue past node failures, one must specify
the appropriate flags from Table 2.

Table 2: SCR job allocation flags
MOAB batch script #MSUB -1 resfailpolicy=ignore
MOAB via mxterm mxterm ... -1 resfailpolicy=ignore

MOAB interactive gsub -I ... -1 resfailpolicy=ignore
Interactive SLURM salloc --no-kill ...

5.4 The SCR wrapper script

The easiest way to integrate SCR into a batch script is to set some environment variables and to replace the job run
command with an SCR wrapper script. The SCR wrapper script includes logic to restart an application within an
job allocation, and it scavenges files from cache to the parallel file system at the end of an allocation. On SLURM,
replace srun with scr_srun, and on ALPS, replace aprun with scr_aprun.

21

SLURM: scr_srun [srun_options] <prog> [prog_args ...]
ALPS: scr_aprun [aprun_options] <prog> [prog_args ...]

For applications that cannot invoke the SCR wrapper script as described here, one should examine the logic
contained in the script and duplicate the necessary parts in the job’s batch script.

The SCR wrapper script must run from within a job allocation. The command processes no parameters — it
passes all parameters directly to srun (SLURM) or aprun (ALPS). Internally, the command must know the prefix
directory. By default, it uses the current working directory. One may specify a different prefix directory by setting
the SCR_PREFIX parameter.

It is recommended to set the SCR_HALT_SECONDS parameter so that the job allocation does not expire before the
latest checkpoint can be flushed (Section 7).

By default, the SCR wrapper script does not restart an application after the first job step exits. To automatically
restart a job step within the current allocation, set the SCR_RUNS environment variable to the maximum number of
runs to attempt. For an unlimited number of attempts, set this variable to -1.

After a job step exits, the wrapper script checks whether it should restart the job. If so, the script sleeps for
some time to give nodes in the allocation a chance to clean up. Then, it checks that there are sufficient healthy
nodes remaining in the allocation. By default, the wrapper script assumes the next run requires the same number
of nodes as the previous run, which is recorded in a file written by the SCR library. If this file cannot be read,
the command assumes the application requires all nodes in the allocation. Alternatively, one may override these
heuristics and precisely specify the number of nodes needed by setting the SCR_MIN_NODES environment variable to
the number of required nodes.

Some applications cannot run via wrapper scripts.

5.5 Example batch script for using SCR restart capability
An example MOAB / SLURM batch script with scr_srun is shown below:

#!/bin/bash

#MSUB -1 partition=atlas
#MSUB -1 nodes=66

#MSUB -1 resfailpolicy=ignore

above, tell MOAB / SLURM to not kill the job allocation upon a node failure
also note that the job requested 2 spares -- it uses 64 nodes but allocated 66

add the scr commands to the job environment
. /usr/local/tools/dotkit/init.sh

use scr-1.1

specify where checkpoint directories should be written
export SCR_PREFIX=/p/lscratchb/username/runl/checkpoints

instruct SCR to flush to the file system every 20 checkpoints
export SCR_FLUSH=20

halt if there is less than an hour remaining (3600 seconds)
export SCR_HALT_SECONDS=3600

attempt to run the job up to 3 times
export SCR_RUNS=3

run the job with scr_srun
scr_srun -n512 -N64 ./my_job

22

6 Configure a job

The default SCR configuration suffices for many Linux clusters. However, significant performance improvement or
additional functionality may be gained via custom configuration.

6.1 Setting parameters

SCR searches the following locations in the following order for a parameter value, taking the first value it finds.
1. Environment variables,
2. User configuration file,
3. System configuration file,

4. Compile-time constants.

Some parameters, such as the location of the control directory, cannot be specified by the user. Such parameters
must be either set in the system configuration file or hard-coded into SCR as compile-time constants.

To find a user configuration file, SCR looks for a file named .scrconf in the prefix directory (note the leading
dot). Alternatively, one may specify the name and location of the user configuration file by setting the SCR_CONF_FILE
environment variable at run time, e.g.,

export SCR_CDNF_FILE=”/myscr.conf

The location of the system configuration file is hard-coded into SCR at build time. On LLNL systems, one may
find this file at /etc/scr.conf.

To set an SCR parameter in a configuration file, list the parameter name followed by its value separated by an
‘="sign. Blank lines are ignored, and any characters following the ‘#’ comment character are ignored. For example,
a configuration file may contain something like the following:

>>: cat “/myscr.conf
set the halt seconds to one hour
SCR_HALT_SECONDS=3600

set SCR to flush every 20 checkpoints
SCR_FLUSH=20

6.2 Group, store, and checkpoint descriptors

SCR must have information about process groups, storage devices, and redundancy schemes. The defaults provide
reasonable settings for Linux clusters, but one can define custom settings via group, store, and checkpoint descriptors
in configuration files.

SCR must know which processes are likely to fail at the same time (failure groups) and which processes access
a common storage device (storage groups). By default, SCR creates a group of all processes in the job called WORLD
and another group of all processes on the same compute node called NODE. If more groups are needed, they can be
defined in configuration files with entries like the following:

GROUPS=zinl POWER=psul SWITCH=0
GROUPS=zin2 POWER=psul SWITCH=1
GROUPS=zin3 POWER=psu2 SWITCH=0
GROUPS=zin4 POWER=psu2 SWITCH=1

Group descriptor entries are identified by a leading GROUPS key. Each line corresponds to a single compute
node, where the hostname is the value of the GROUPS key. There must be one line for every compute node in the
allocation. It is recommended to specify groups in the system configuration file.

23

The remaining values on the line specify a set of group name / value pairs. The group name is the string
to be referenced by store and checkpoint descriptors. The value can be an arbitrary character string. The only
requirement is that for a given group name, nodes that form a group must specify identical values.

In the above example, there are four compute nodes: zinl, zin2, zin3, and zin4. There are two groups defined:
POWER and SWITCH. Nodes zinl and zin2 belong to the same POWER group, as do nodes zin3 and zin4. For the SWITCH
group, nodes zinl and zin3 belong to the same group, as do nodes zin2 and zin4.

In addition to groups, SCR must know about the storage devices available on a system. SCR requires that all
processes be able to access the prefix directory, and it assumes that /tmp is storage local to each compute node.
Additional storage can be described in configuration files with entries like the following:

STORE=/tmp GROUP=NODE COUNT=1

STORE=/ssd GROUP=NODE = COUNT=3

STORE=/dev/persist GROUP=NODE COUNT=1 ENABLED=1 MKDIR=0
STORE=/p/lscratcha GROUP=WORLD

Store descriptor entries are identified by a leading STORE key. Each line corresponds to a class of storage devices.
The value associated with the STORE key is the directory prefix of the storage device. This directory prefix also
serves as the name of the store descriptor. All compute nodes must be able to access their respective storage device
via the specified directory prefix.

The remaining values on the line specify properties of the storage class. The GROUP key specifies the group of
processes that share a device. Its value must specify a group name. The COUNT key specifies the maximum number
of checkpoints that can be kept in the associated storage. The user should be careful to set this appropriately
depending on the storage capacity and the application checkpoint size. The COUNT key is optional, and it defaults
to the value of the SCR_CACHE_SIZE parameter if not specified. The ENABLED key enables (1) or disables (0) the
store descriptor. This key is optional, and it defaults to 1 if not specified. The MKDIR key specifies whether the
device supports the creation of directories (1) or not (0). This key is optional, and it defaults to 1 if not specified.

In the above example, there are four storage devices specified: /tmp, /ssd, /dev/persist, and /p/lscratcha.
The storage at /tmp, /ssd, and /dev/persist specify the NODE group, which means that they are node-local storage.
Processes on the same compute node access the same device. The storage at /p/lscratcha specifies the WORLD
group, which means that all processes in the job can access the device. In other words, it is a globally accessible
file system.

Finally, SCR must be configured with redundancy schemes. By default, SCR protects against single compute
node failures using XOR, and it caches one checkpoint in /tmp. To specify something different, edit a configuration
file to include checkpoint descriptors. Checkpoint descriptors look like the following:

instruct SCR to use the CKPT descriptors from the config file
SCR_COPY_TYPE=FILE

the following instructs SCR to run with three checkpoint configurations:

- save every 8th checkpoint to /ssd using the PARTNER scheme

- save every 4th checkpoint (not divisible by 8) to /ssd using XOR with

a set size of 8

- save all other checkpoints (not divisible by 4 or 8) to /tmp using XOR with
a set size of 16

CKPT=0 INTERVAL=1 GROUP=NODE STORE=/tmp TYPE=XOR SET_SIZE=16

CKPT=1 INTERVAL=4 GROUP=NODE STORE=/ssd TYPE=XOR SET_SIZE=8

CKPT=2 INTERVAL=8 GROUP=SWITCH STORE=/ssd TYPE=PARTNER

First, one must set the SCR_COPY_TYPE parameter to “FILE”. Otherwise, an implied checkpoint descriptor is con-
structed using various SCR parameters including SCR_GROUP, SCR_CACHE BASE, SCR_COPY_TYPE, and SCR_SET_SIZE.
Checkpoint descriptor entries are identified by a leading CKPT key. The values of the CKPT keys must be
numbered sequentially starting from 0. The INTERVAL key specifies how often a checkpoint is to be applied. For
each checkpoint, SCR selects the descriptor having the largest interval value that evenly divides the internal SCR,

24

checkpoint iteration number. It is necessary that one descriptor has an interval of 1. This key is optional, and it
defaults to 1 if not specified. The GROUP key lists the failure group, i.e., the name of the group of processes likely
to fail. This key is optional, and it defaults to the value of the SCR_GROUP parameter if not specified. The STORE
key specifies the directory in which to cache the checkpoint. This key is optional, and it defaults to the value of
the SCR_CACHE BASE parameter if not specified. The TYPE key identifies the redundancy scheme to be applied. This
key is optional, and it defaults to the value of the SCR_COPY_TYPE parameter if not specified.

Other keys may exist depending on the selected redundancy scheme. For X0OR schemes, the SET_SIZE key specifies
the minimum number of processes to include in each XOR set.

6.3 SCR parameters

The table in this section specifies the full set of SCR configuration parameters.

Table 3: SCR parameters

Name Default Description

SCR_HALT_SECONDS 0 Set to a positive integer to instruct SCR to halt the job after completing
a successful checkpoint if the remaining time in the current job allocation
is less than the specified number of seconds.

SCR_GROUP NODE Specify name of failure group.

SCR_COPY_TYPE XO0R Set to one of: SINGLE, PARTNER, XOR, or FILE.

SCR_CACHE_BASE /tmp Specify the base directory SCR should use to cache checkpoints.
SCR_CACHE_SIZE 1 Set to a non-negative integer to specify the maximum number of check-

points SCR should keep in cache. SCR will delete the oldest checkpoint
from cache before saving another in order to keep the total count below
this limit.

SCR_SET_SIZE 8 Specify the minimum number of processes to include in an XOR set.
Increasing this value decreases the amount of storage required to cache
the checkpoint data. However, higher values have an increased likelihood
of encountering a catastrophic error. Higher values may also require
more time to reconstruct lost files from redundancy data.

SCR_PREFIX $PWD Specify the prefix directory on the parallel file system where checkpoints
should be read from and written to.

SCR_DISTRIBUTE 1 Set to 0 to disable file distribution during SCR_Init.

SCR_FETCH 1 Set to 0 to disable SCR from fetching files from the parallel file system
during SCR_Init.

SCR_FETCH_WIDTH 256 Specify the number of processes that may read simultaneously from the
parallel file system.

SCR_FLUSH 10 Specify the number of checkpoints between periodic SCR flushes to the
parallel file system. Set to 0 to disable periodic flushes.

SCR_FLUSH_WIDTH 256 Specify the number of processes that may write simultaneously to the
parallel file system.

SCR_FLUSH_ON_RESTART 0 Set to 1 to force SCR to flush a checkpoint during restart. This is useful
for codes that must restart from the parallel file system.

SCR_RUNS 1 Specify the maximum number of times the scr_srun command should

attempt to run a job within an allocation. Set to -1 to specify an unlim-
ited number of times.
SCR_MIN_NODES N/A Specify the minimum number of nodes required to run a job.
SCR_EXCLUDE_NODES N/A Specify a set of nodes, using SLURM node range syntax, which should
be excluded from runs. This is useful to avoid particular nodes while
waiting for them to be fixed by system administrators. Nodes in this list
which are not in the current allocation are silently ignored.

25

Table 3 — continued from previous page

Name Default Description

SCR_MPI BUF_SIZE 131072 Specify the number of bytes to use for internal MPI send and receive
buffers when computing redundancy data or rebuilding lost files.

SCR_FILE BUF_SIZE 1048576 Specify the number of bytes to use for internal buffers when copying files
between the parallel file system and the cache.

SCR_CRC_ON_COPY 0 Set to 1 to enable CRC32 checks when copying files during the redun-
dancy scheme.

SCR_CRC_ON_DELETE 0 Set to 1 to enable CRC32 checks when deleting files from cache.

SCR_CRC_ON_FLUSH 1 Set to 0 to disable CRC32 checks during fetch and flush operations.

SCR_DEBUG 0 Set to 1 or 2 for increasing verbosity levels of debug messages.

SCR_WATCHDOG_TIMEOUT N/A Set to the expected time (seconds) for checkpoint writes to in-system

storage (See Section 7.5).
SCR_WATCHDOG_TIMEQUT_PFS N/A Set to the expected time (seconds) for checkpoint writes to the parallel
file system (See Section 7.5).

7 Halt a job

There are several mechanisms to instruct a running SCR application to halt. It is often necessary to interact with
the resource manager to halt a job.

7.1 scr_halt and the halt file

The recommended method to stop an SCR application is to use the scr_halt command. The command must be
run from within the prefix directory, or otherwise, the prefix directory of the target job must be specified as an
argument.

A number of different halt conditions can be specified. In most cases, the scr_halt command communicates
these conditions to the running application via the halt.scr file, which is stored in the hidden .scr directory
within the prefix directory. The SCR library reads the halt file when the application calls SCR_Init and each time
the application calls SCR_Complete_checkpoint. If a halt condition is satisfied, all tasks in the application call
exit.

7.2 Halt after next checkpoint

You can instruct an SCR job to halt after completing its next successful checkpoint:
scr_halt

To run scr_halt from outside of a prefix directory, specify the target prefix directory like so:
scr_halt /p/lscratcha/userl/simulation123

You can instruct an SCR job to halt after completing X checkpoints via the -—checkpoints option. For example,
to instruct a job to halt after 10 more checkpoints, use the following:

scr_halt --checkpoints 10

If the last of the X checkpoints is unsuccessful, the job continues until it completes a successful checkpoint. This
ensures that SCR has a successful checkpoint to flush before it halts the job.

26

7.3 Halt before or after a specified time

It is possible to instruct an SCR job to halt after a specified time using the --after option. The job will halt on
its first successful checkpoint after the specified time. For example, you can instruct a job to halt after “12:00pm
today” via:

scr_halt --after ‘12:00pm today’

It is also possible to instruct a job to halt before a specified time using the —-before option. For example, you
can instruct a job to halt before “8:30am tomorrow” via:

scr_halt --before ‘8:30am tomorrow’

For the “halt before” condition to be effective, one must also set the SCR_HALT_SECONDS parameter. When
SCR_HALT_SECONDS is set to a positive number of seconds, SCR checks how much time is left before the specified
time limit. If the remaining time is less than or equal to SCR_HALT_SECONDS, SCR halts the job. The value of
SCR_HALT_SECONDS does not affect the “halt after” condition.

It is highly recommended that SCR_HALT_SECONDS be set so that the SCR library can impose a default “halt
before” condition using the end time of the job allocation. This ensures the latest checkpoint can be flushed before
the allocation is lost.

It is important to set SCR_HALT_SECONDS to a value large enough that SCR has time to completely flush (and
rebuild) files before the allocation expires. Consider that a checkpoint may be taken just before the remaining time
is less than SCR_HALT_SECONDS. If a code checkpoints every X seconds and it takes Y seconds to flush files from
the cache and rebuild, set SCR.HALT_SECONDS = X + Y + A, where A is some positive value to provide additional
slack time.

One may also set the halt seconds via the —-seconds option to scr_halt. Using the scr_halt command, one
can set, change, and unset the halt seconds on a running job.

NOTE: If any scr_halt commands are specified as part of the batch script before the first run starts, one must
then use scr_halt to set the halt seconds for the job rather than the SCR_HALT_SECONDS parameter. The scr_halt
command creates the halt file, and if a halt file exists before a job starts to run, SCR ignores any value specified in
the SCR_HALT _SECONDS parameter.

7.4 Halt immediately

Sometimes, you need to halt an SCR job immediately, and there are two options for this. You may use the
--immediate option:

scr_halt --immediate

This command first updates the halt file, so that the job will not be restarted once stopped. Then, it kills the
current run.

If for some reason the —-immediate option fails to work, you may manually halt the job.? First, issue a simple
scr_halt so the job will not restart, and then manually kill the current run using mechanisms provided by the
resource manager, e.g., scancel for SLURM and apkill for ALPS.

When using mechanisms provided by the resource manager to kill the current run, be careful to cancel the job
step and not the job allocation. Canceling the job allocation destroys the cache.

For SLURM, to get the job step id, type: squeue -s. Then be sure to include the job id and step id in the
scancel argument. Do not just type “scancel 1234” — be sure to include the job step id. For example, if the job
id is 1234 and the step id is 5, then use the following commands:

scr_halt
scancel 1234.5

For ALPS, use apstat to get the apid of the job step to kill. Then, follow the steps as described above: execute
scr_halt followed by the kill command apkill <apid>.

20n Cray/ALPS, scr_halt --immediate is not yet supported. The alternate method described in the text must be used instead.

27

7.5 Catch a hanging job

If an application hangs, SCR may not be given the chance to copy files from cache to the parallel file system before
the allocation expires. To avoid losing significant compute time due to a hang, SCR. attempts to detect if a job is
hung, and if so, SCR attempts to kill the job step so that it can be restarted in the allocation.

On some systems, SCR employs the io-watchdog library for this purpose. For more information on this tool, see
http://code.google.com/p/io-watchdog and on LLNL systems, see /usr/local/tools/io-watchdog/README.

On systems where io-watchdog is not available, SCR uses a generic mechanism based on the expected time
between checkpoints as specified by the user. If the time between checkpoints is longer than expected, SCR
assumes the job is hung. Two SCR parameters determine how many seconds should pass between I/O phases in
an application, i.e. seconds between consecutive calls to SCR_Start_checkpoint. These are SCR_WATCHDOG_TIMEQUT
and SCR_WATCHDOG_TIMEQUT_PFS. The first parameter specifies the time to wait when SCR, writes checkpoints to
in-system storage, e.g. SSD or RAM disk, and the second parameter specifies the time to wait when SCR, writes
checkpoints to the parallel file system. The reason for the two timeouts is that writing to the parallel file system
generally takes much longer than writing to in-system storage, and so a longer timeout period is useful in that case.

When using this feature, be careful to check that the job does not hang near the end of its allocation time limit,
since in this case, SCR may not kill the run with enough time before the allocation ends. If you suspect the job to
be hanging and you deem that SCR will not kill the run in time, manually cancel the run as described above.

7.6 Combine, list, change, and unset halt conditions

It is possible to specify multiple halt conditions. To do so, simply list each condition in the same scr_halt command
or issue several commands. For example, to instruct a job to halt after 10 checkpoints or before “8:30am tomorrow”,
which ever comes earlier, you could issue the following command:

scr_halt --checkpoints 10 --before ¢8:30am tomorrow’
The following sequence also works:

scr_halt --checkpoints 10
scr_halt --before ‘8:30am tomorrow’

You may list the current settings in the halt file with the --1ist option, e.g.,:
scr_halt --list

You may change a setting by issuing a new command to overwrite the current value.

Finally, you can unset some halt conditions by prepending unset- to the option names. See the scr_halt man
page for a full listing of unset options. For example, to unset the “halt before” condition on a job, type the following:

scr_halt --unset-before

7.7 Remove the halt file

Sometimes, especially during testing, you may want to run in an existing allocation after halting a previous run.
When SCR detects a halt file with a satisfied halt condition, it immediately exits. This is the desired effect when
trying to halt a job, however this mechanism also prevents one from intentionally running in an allocation after
halting a previous run. Along these lines, know that SCR registers a halt condition whenever the application calls
SCR_Finalize.

When there is a halt file with a satisfied halt condition, a message is printed to stdout to indicate why SCR is
halting. For example, you may see something like the following:

SCR: rank O on hypeb5: Job exiting: Reason: SCR_FINALIZE_CALLED.

To run in such a case, first remove the satisfied halt conditions. You can unset the conditions or reset them to
appropriate values. Another approach is to remove the halt file via the —-remove option. This deletes the halt file,
which effectively removes all halt conditions. For example, to remove the halt file from a job, type:

scr_halt --remove

28

8 Manage datasets

SCR records the status of datasets stored on the parallel file system in the index.scr file. This file is stored in the
hidden .scr directory within the prefix directory. The library updates the index file as an application runs. Before
copying a dataset to the parallel file system, SCR records an entry for that dataset in the index file.

To restart a job, the SCR library reads the index file during SCR_Init to determine which checkpoints are
available. The library starts with the most recent checkpoint and works backward. SCR does not fetch any
checkpoint marked as “incomplete” or “failed”. A checkpoint is marked as incomplete if it was determined to be
invalid during the flush or scavenge. Additionally, the library marks a checkpoint as failed if it detected a problem
during a previous fetch attempt (e.g., detected data corruption). In this way, the library skips invalid or problematic
checkpoints.

One may list or modify the contents of the index file via the scr_index command. The scr_index command
must run within the prefix directory, or otherwise, one may specify a prefix directory using the “~--prefix” option.
The default behavior of scr_index is to list the contents of the index file, e.g.:

>>: scr_index
DSET VALID FLUSHED DIRECTORY
* 18 YES 2014-01-14T11:26:06 scr.dataset.18
12 YES 2014-01-14T10:28:23 scr.dataset.12
6 YES 2014-01-14T09:27:15 scr.dataset.6

When listing datasets, the internal SCR, dataset id is shown, followed by a field indicating whether the dataset
is valid, the time it was flushed to the parallel file system, and finally the dataset directory name.

One checkpoint may also be marked as “current”. When restarting a job, the SCR library starts from the
current dataset and works backwards. The current dataset is denoted with a leading * character. One can change
the current checkpoint using the —-current option.

scr_index --current scr.dataset.12

In most cases, the SCR library or the SCR commands add all necessary entries to the index file. However, there
are cases where they may fail. In particular, if the scr_postrun command successfully scavenges a dataset but the
resource allocation ends before the command can rebuild missing files, an entry may be missing from the index file.
In such cases, one may manually add the corresponding entry using the “--add” option.

When adding a new dataset directory to the index file, the scr_index command checks whether the files in a
dataset directory constitute a complete and valid set. It rebuilds missing files if there are sufficient redundant data,
and it writes the summary.scr file if needed.

scr_index --add scr.dataset.50

One may also remove entries from the index file using the “--remove” option. This operation does not delete
the corresponding dataset files — it only deletes the entry from the index.scr file.

scr_index --remove scr.dataset.50

This is useful if one deletes a dataset from the parallel file system and then wishes to update the index.

9 Support and Contacts

The main repository for SCR is located at:
https://github.com/hpc/scr

From this site, you can download the source code and manuals for the current release of SCR.

For information about the project including active research efforts, please visit:
https://computation.llnl.gov/project/scr

To contact the developers of SCR for help with using or porting SCR, please visit:
https://computation.llnl.gov/project/scr/contact.php

There you will find links to join our discussion mailing list for help topics, and our announcement list for getting

notifications of new SCR releases.

29

https://github.com/hpc/scr
https://computation.llnl.gov/project/scr
https://computation.llnl.gov/project/scr/contact.php

References

[1] N. H. Vaidya, “A case for two-level recovery schemes,” IEEE Transactions on Computers, vol. 47, no. 6, pp. 656—
666, 1998.

[2] W. Gropp, R. Ross, and N. Miller, “Providing Efficient I/O Redundancy in MPI Environments,” in Lecture
Notes in Computer Science, 3241:7786, September 2004. 11th European PVM/MPI Users Group Meeting, 2004.

[3] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID),” in Proc.
of 1988 ACM SIGMOD Conf. on Management of Data, 1988.

[4] M. Jette, “Simple Linux Utility for Resource Management (SLURM).” https://computing.1lnl.gov/linux/
slurm.

30

https://computing.llnl.gov/linux/slurm
https://computing.llnl.gov/linux/slurm

	Abstract
	Contents
	Introduction
	Assumptions
	Overview
	Intro to the SCR API
	Jobs, allocations, and runs
	Group, store, and redundancy descriptors
	Control, cache, and prefix directories
	Example of SCR files and directories
	Scalable checkpoint
	Scalable restart
	Catastrophic failures
	Fetch, flush, and scavenge

	The SCR library
	SCR API
	SCR_Init
	SCR_Finalize
	SCR_Need_checkpoint
	SCR_Start_checkpoint
	SCR_Complete_checkpoint
	SCR_Route_file

	Integrating the SCR API
	Init/Finalize
	Checkpoint
	Restart

	Building with the SCR library

	Run a job
	Supported platforms
	Jobs and job steps
	Ignoring node failures
	The SCR wrapper script
	Example batch script for using SCR restart capability

	Configure a job
	Setting parameters
	Group, store, and checkpoint descriptors
	SCR parameters

	Halt a job
	scr_halt and the halt file
	Halt after next checkpoint
	Halt before or after a specified time
	Halt immediately
	Catch a hanging job
	Combine, list, change, and unset halt conditions
	Remove the halt file

	Manage datasets
	Support and Contacts

